ثبت نام یا ورود
هنوز ثبت نام نکرده اید؟

هم اکنون عضو پلاک آبی شوید .و به اطلاعات وب سایت ما دسترسی داشته باشید

تنظیم مجدد کلمه عبور - نام کاربری را فراموش کرده ام

نام کاربری
کلمه عبور
مرا به خاطر بسپار


  • کد دوره

  • عنوان دوره

    مبانی انباره داده اوراکل Oracle Database 11g:Data WareHousing Fundementals 
  • معرفی دوره، هدف و کاربرد

    در این دوره دانشجویان با مفاهیم پایه انباره داده و مباحث مختلف طراحی و پیاده سازی آشنا خواهند شد. همچنین مباحثی در ارتباط با ETL و MetaData Management در این دوره ارایه خواهد شد.


    فراگیری مفاهیم پایه انباره داده

    فراگیری مفاهیم تجمیع و یکپارچه سازی داده

    فراگیری نحوه پیاده سازی انباره داده  

  • نحوه برگزاری

  • مدت دوره

    24 ساعت
  • روزهای برگزاری

    یکشنبه و سه شنبه 18:00 تا 21:00
  • مخاطبین دوره

    کاربران  BI

    توسعه دهندگان سامانه های BI

    کارشناسان انباره داده    

  • پیش نیاز

    آشنایی با مفاهیم BI

    آشنایی به مفاهیم پایگاه داده  

  • محتوای دوره


    • Course Objectives
    • Course Schedule
    • Course Pre-requisites and Suggested Pre-requisites
    • The sh and dm Sample Schemas and Appendices Used in the Course
    • Class Account Information
    • SQL Environments and Data Warehousing Tools Used in this Course
    • Oracle 11g Data Warehousing and SQL Documentation and Oracle By Examples
    • Continuing Your Education: Recommended Follow-Up Classes

    Data Warehousing, Business Intelligence, OLAP, and Data Mining

    • Data Warehouse Definition and Properties
    • Data Warehouses, Business Intelligence, Data Marts, and OLTP
    • Typical Data Warehouse Components
    • Warehouse Development Approaches
    • Extraction, Transformation, and Loading (ETL)
    • The Dimensional Model and Oracle OLAP
    • Oracle Data Mining

    Defining Data Warehouse Concepts and Terminology

    • Data Warehouse Definition and Properties
    • Data Warehouse Versus OLTP
    • Data Warehouses Versus Data Marts
    • Typical Data Warehouse Components
    • Warehouse Development Approaches
    • Data Warehousing Process Components
    • Strategy Phase Deliverables
    • Introducing the Case Study: Roy Independent School District (RISD)

    Business, Logical, Dimensional, and Physical Modeling

    • Data Warehouse Modeling Issues
    • Defining the Business Model
    • Defining the Logical Model
    • Defining the Dimensional Model
    • Defining the Physical Model: Star, Snowflake, and Third Normal Form
    • Fact and Dimension Tables Characteristics
    • Translating Business Dimensions into Dimension Tables
    • Translating Dimensional Model to Physical Model

    Database Sizing, Storage, Performance, and Security Considerations

    • Database Sizing and Estimating and Validating the Database Size
    • Oracle Database Architectural Advantages
    • Data Partitioning
    • Indexing
    • Optimizing Star Queries: Tuning Star Queries
    • Parallelism
    • Security in Data Warehouses
    • Oracle’s Strategy for Data Warehouse Security

    The ETL Process: Extracting Data

    • Extraction, Transformation, and Loading (ETL) Process
    • ETL: Tasks, Importance, and Cost
    • Extracting Data and Examining Data Sources
    • Mapping Data
    • Logical and Physical Extraction Methods
    • Extraction Techniques and Maintaining Extraction Metadata
    • Possible ETL Failures and Maintaining ETL Quality
    • Oracle’s ETL Tools: Oracle Warehouse Builder, SQL*Loader, and Data Pump


    The ETL Process: Transforming Data

    • Transformation
    • Remote and Onsite Staging Models
    • Data Anomalies
    • Transformation Routines
    • Transforming Data: Problems and Solutions
    • Quality Data: Importance and Benefits
    • Transformation Techniques and Tools
    • Maintaining Transformation Metadata

    The ETL Process: Loading Data

    • Loading Data into the Warehouse
    • Transportation Using Flat Files, Distributed Systems, and Transportable Tablespaces
    • Data Refresh Models: Extract Processing Environment
    • Building the Loading Process
    • Data Granularity
    • Loading Techniques Provided by Oracle
    • Postprocessing of Loaded Data
    • Indexing and Sorting Data and Verifying Data Integrity

    Refreshing the Warehouse Data

    • Developing a Refresh Strategy for Capturing Changed Data
    • User Requirements and Assistance
    • Load Window Requirements
    • Planning and Scheduling the Load Window
    • Capturing Changed Data for Refresh
    • Time- and Date-Stamping, Database triggers, and Database Logs
    • Applying the Changes to Data
    • Final Tasks

    Materialized Views

    • Using Summaries to Improve Performance
    • Using Materialized Views for Summary Management
    • Types of Materialized Views
    • Build Modes and Refresh Modes
    • Query Rewrite: Overview
    • Cost-Based Query Rewrite Process
    • Working With Dimensions and Hierarchies

    Leaving a Metadata Trail

    • Defining Warehouse Metadata
    • Metadata Users and Types
    • Examining Metadata: ETL Metadata
    • Extraction, Transformation, and Loading Metadata
    • Defining Metadata Goals and Intended Usage
    • Identifying Target Metadata Users and Choosing Metadata Tools and Techniques
    • Integrating Multiple Sets of Metadata
    • Managing Changes to Metadata

    Data Warehouse Implementation Considerations

    • Project Management
    • Requirements Specification or Definition
    • Logical, Dimensional, and Physical Data Models
    • Data Warehouse Architecture
    • ETL, Reporting, and Security Considerations
    • Metadata Management
    • Testing the Implementation and Post Implementation Change Management
    • Some Useful Resources and White Papers


    • پیشنهاد تکمیلی

      Oracle BI Suite 11g R1: Build Repositories

      Oracle BI Suite 11gR1: Create Analyses and Dashboards

      Oracle Data Integrator 12c: Integration and Administration  


     تماس با ما

    تلفن: 09211437289
    پست الکترونیک:
    info @ p l a c a b i . com


    We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…